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We’ll Cover
• USB Overview
• Where USB fits into the Mac OS
• How devices describe themselves
• How drivers describe themselves
• How the Mac OS determines what

driver to use



And Also…
• The internals of a device driver
• How drivers operate
• How drivers communicate with devices
• How drivers communicate with

applications
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USB in the Mac OS

USB Interface Module

USB Device Driver

USB ServicesLib, Expert and
Manager

Mac OS

USB Shim

USB Hardware

Unit Table Driver

Applications



USB Expert
• Handles requests by the hub driver to load

class drivers
• Handles requests by the composite driver

to load interface drivers
• Examines drivers and determines if they

should be loaded



USB Manager
• Provides services to Shims and other

clients
• Sends notifications when devices are

connected or disconnected

• Allows the client to iterate through the
USB device list and locate a particular
device



Devices
and Drivers



How Devices
Describe Themselves

• All devices contain a “Device Descriptor”
• Devices have one or more “Configuration

Descriptors”
• Configuration Descriptors usually contain

one or more “Interface Descriptors”
• Each Interface Descriptor contains one or

more “Endpoints”



Inside a USB Device
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Demo
USB Modem



Device Class Codes
• Composite Class… 0
• Audio Class…… 1
• HID Class……3
• Display Class…4
• Printing Class… 7

• Storage Class…… 8
• Hub Class……… 9
• Comm Class…… 2
• Data Class……… 10
• Vendor Specific… 255



Interface Class Codes
• Same as Device Class Codes, except…
• “Composite Class” code (0x00) is a

reserved value in the interface class
code field



Device Review…
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Communicating
with Devices

• The connection between a driver and an
Endpoint is a “Pipe”

• Four types of Endpoints
• Control

• Interrupt

• Bulk

• Isochronous



Pipes and Endpoints
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Types of Endpoints
• Control: Changes modes, gets descriptors,

sets features, etc.
• Interrupt: Auto-polled periodic read or

write of small packets to the device
• Bulk: Guaranteed quality, not guaranteed

to be on time
• Isoch:  Guaranteed to be on time, not

guaranteed to be error free



Inside a USB Driver File
• One or more Driver Code Fragments

• Each Driver Code fragment contains
• A Driver Description Structure

• A Driver Dispatch Table

• The Driver’s code



Inside a USB Driver File

Driver Code
InitFoo()
{
};
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Driver Description
Structure

• Vendor and Product ID of driver
• Device Class, Subclass, and Protocol
• Interface Class, Subclass, and Protocol
• Driver loading options indicate…

• If the driver is Vendor Specific

• If the driver should only load as an
interface driver



Types of Drivers
• “Vendor Specific”

• The driver loads only for your device

• “Standard Apple Drivers”
• Generic drivers Apple supplies with the

Mac OS

• Note: The recommended way to make a driver “vendor
specific” is to put a Vendor ID in the driver description
structure and to set the driver loading options correctly



When a Device
Is Attached

• The Hub driver…
• Detects a device attach and

“enumerates” the device

• Asks the USB Expert to load a driver

• The USB Expert…
• Loads the driver and calls its

initialization routine



Matching Drivers
to Devices

• The Expert examines every driver to see if
there’s a potential match to the device

• Vendor and Product IDs

• Class/Subclass/Protocol

• Vendor Specific drivers take precedence
over Standard Apple Drivers



Matching Drivers (Cont.)
• Each driver’s Validate Hardware routine

is called
• The driver’s rank is set to zero if the

Validate Hardware routine returns
an error

• The Expert calls the initialization
routine of the highest ranking driver



Recommendations…
• Write Vendor Specific drivers

• Put your Vendor ID in the
Vendor ID field

• Set the “kUSBDoNotMatchGenericDevice”
flag in the Driver Loading Options field

• Put your Vendor ID in the device
descriptor, not the chip maker’s ID



A Composite Device
Composite Device

Configuration
Descriptor
  Power Required

Interface
Descriptor

Interface
Descriptor
Class and Subclass

Interface
Descriptor

DeviceDescripto
r VID and PID
Composite Class

Interface
Driver

Interface
Driver

Interface
Descriptor
Class and Subclass



Device and
Interface Drivers

• Device drivers must select a configuration,
check power availability, and configure
interfaces

• Interface drivers don’t need to select a
configuration, worry about power
consumption, or configure the interface



Writing a
USB Driver



Writing a USB Driver
• “Vendor Specific” drivers are mandatory
• Driver writers can choose between writing

a “device driver” or an “interface driver”
• Device drivers are loaded for devices

• Interface drivers are loaded for
interfaces within composite devices



Inside a USB Driver File

Driver Code
InitFoo()
{
};
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Driver Dispatch Table
• Device Initialization routine
• Interface Initialization routine
• Validate Hardware routine
• Notification routine
• Finalize routine



Validate Hardware
• Allows the driver to report whether it

should work for this USB Device
• Return kUSBNoErr if the driver is

acceptable



Device Initialization
• Called when the driver is loaded for

a device
• Initiates the first USB transaction (which

will complete asynchronously)
• Drivers entered via this entry point must

select a device configuration



Device Driver Startup
• Find the desired device configuration
• Set the configuration
• Open the interfaces in the configuration
• Find the “pipes” within the interfaces
• Prepare to read and/or write to the pipes



Selecting a
Configuration

• Depends on how much power is available
• Depends on what interfaces the driver

will use

• Example: Some modems have two configurations, one
with vendor specific interfaces, the other with Comm
and Data interfaces



Interface Initialization
• Called when the driver is loaded to control

an Interface
• Initiates the first USB transaction (which

will complete asynchronously)
• Drivers initialized via this entry point

should not select a configuration



Interface Driver Startup
• Open the interface
• Find the “pipes” within the interface
• Prepare to read and/or write to the pipes



Writing Code



Driver Writing Basics
• Most APIs complete asynchronously
• Completion routines may be called at

Secondary Interrupt time
• Don’t “spin” on the param block

status value
• Use only the USB Services Library and

Driver Services Library



Using
Asynchronous APIs

• Almost all USL APIs require a completion
procedure

• The Mac OS USB DDK examples use state
machines to work with the asynchronous
nature of the USB APIs

• In the DDK examples, one API’s
completion routine just calls another API



Opaque Datatypes
• Opaque datatypes

• DeviceRef

• InterfaceRef

• PipeRef

• Avoid hard coding configuration, interface,
or endpoint numbers



Device Driver
Initialization

USBClassDriverPluginDispatchTable
        TheClassDriverPluginDispatchTable =
{

kClassDriverPluginVersion,
DriverValidateHW,
DeviceInitialize ,
InterfaceInitialize,
DriverFinalize,
DriverNotifyProc,

};



APIs Used
in a Device Driver

• USBFindNextInterface
• USBSetConfiguration
• USBNewInterfaceRef
• USBConfigureInterface
• USBFindNextPipe



USBFindNextInterface

Finding the
Desired Configuration

• Parameters:
• The power available to the device

• The desired interface class, subclass,
and protocol

• Returns:
• Configuration and interface numbers



USBSetConfiguration

Setting the
Device Configuration

• Parameters:
• The configuration number returned by
USBFindNextInterface

• The USB Services Library does a set
configuration to the device



USBNewInterfaceRef

Getting an InterfaceRef

• Parameters:
• The interface number returned by
USBFindNextInterface

• Returns:
• InterfaceRef to the interface



USBConfigureInterface

Configuring the Interface

• Parameters:
• The interfaceRef returned by
USBNewInterfaceRef

• The USB Services Library opens all the
pipes in the interface



USBFindNextPipe

Finding the
Pipes in the Interface

• Parameters:
• The interfaceRef returned by
USBNewInterfaceRef

• pipe type and direction

• Returns:
• pipeRef to the pipe



USBIntRead

Reading From a Pipe

• Parameters:
• The pipeRef returned by
USBFindNextPipe

• A pointer to a buffer

• The number of bytes to read

• Returns:
• Data read from the pipe



Interface Driver
Initialization

USBClassDriverPluginDispatchTable
        TheClassDriverPluginDispatchTable =
{

kClassDriverPluginVersion,
DriverValidateHW,
DeviceInitialize,
InterfaceInitialize,
DriverFinalize,
DriverNotifyProc,

};



Interface Drivers
• Loaded by the composite driver
• Examples:

• Apple’s Mouse Driver

• Apple’s Keyboard Driver

• Don’t need to find interfaces or configure
the device

• Supplied with the interfaceRef at startup



APIs Used in an
Interface Driver

• USBFindNextInterface
• USBSetConfiguration
• USBNewInterfaceRef
• USBConfigureInterface
• USBFindNextPipe



Driver Notification Proc

USBClassDriverPluginDispatchTable
        TheClassDriverPluginDispatchTable =
{

kClassDriverPluginVersion,
DriverValidateHW,
DeviceInitialize,
InterfaceInitialize,
DriverFinalize,
DriverNotifyProc,

};



Driver Notification
• The driver’s notification routine can

be called to inform the driver of the
following:

• Driver Removal

• Sleep demand

• Sleep request
kNotifySystemSleepRequest = 1,
kNotifySystemSleepDemand = 2,
kNotifyDriverBeingRemoved = 11



Removal Notification
• Drivers are notified when they are about to

be removed
• A Driver may report that it is still busy
• The notification routine will be called

repeatedly until the driver reports it is
not busy

• The Driver’s finalize routine is then called,
and the driver is removed



Sleep Notifications
• Important for PowerBooks!
• Sleep Request allows the driver to report

that it is busy, and that the system should
not sleep

• Mounted Volumes, open serial
connections, etc.

• Sleep Demand indicates that the system is
going to  sleep, and the driver will be
removed



Sleep in the Future
• USB will allow the device to Suspend and

the driver to remain loaded
• Suspended devices consume far less power

than active devices
• Suspended devices must stop

communication with the device
• Expect that desktop CPUs will ultimately

support USB Suspend



Communicating
with Drivers



Communicating
With Drivers

• Locate the driver’s code fragment
• Locate a symbol within the code fragment

(dispatch table or function)
• Call into the driver using the symbol

• Read or Write data

• Install a callback function



Who Would
Call a Driver?

• USB Shims
• Unit Table Drivers
• Applications



USB Interface Module

USB Device Driver
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USB Shim
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USB in the Mac OS
Applications



USB Shims
• Always loaded and resident
• Loaded before the INIT parade
• Can install Unit Table Drivers



Unit Table Drivers
• Pros:

• Provide Classic Device Manager APIs

• Useful when emulating legacy drivers

• Cons:
• Not needed or appropriate for every

class of USB device

• Special handling required if the unit
table needs to grow



Calling USB Drivers
from Applications

• This is not recommended because…
• Applications should concern themselves

with the service and not the device

• Handling hot unplugs within an
application can be problematic

• Most USB APIs complete at Secondary
Interrupt time



Reasons for Shims or
Unit Table Drivers

• Shims/UTDs can handle device connect
and disconnect and “buffer” the
application from a disappearing driver

• Allows Applications to be unconcerned
about which bus (FireWire or USB)
is used



Locating a USB Driver
• Ask the USB Manager what devices are

attached
• Request notification when devices are

connected or disconnected



Ask the USB Manager
• Use the USBGetNextDeviceByClass API
• Parameters:

• Device Class, Subclass, and protocol

• Returns:
• deviceRef and code fragment

connection ID



Requesting Notification
• Use the USBInstallDeviceNotification API
• Parameters:

• Device Class, Subclass, and protocol

• Event type, Product and Vendor Ids

• Notification procptr

• USB Manager calls the notification proc
when a matching device is connected,
disconnected, etc.



Handling Notifications
• Check the notification type

• Determine the deviceRef (provided in the
notification param block)

• Locate the driver’s code fragment

kNotifyAddDevice = 0,
kNotifyRemoveDevice = 1,
kNotifyAddInterface = 2,
kNotifyRemoveInterface = 3

USBGetDriverConnectionID(&theDevRef, &connID);



USBDelay
• Let’s the driver wait for a specific number

of USB frames
• Also used to get to “task time”

• Some Driver Services Library functions
can only be called at task time

• i.e.: Name Registry access can only
occur at task time



Memory Allocation
• USBAllocMem
• USBDeallocMem

• Remember: A USB Driver may be
operating at secondary interrupt time,
which is not safe for NewPtr and other
OS APIs



Other Useful USL APIs
• Pipes

• USBClearPipeStallByReference

• USBAbortPipeByReference

• USBGetPipeStatusByReference

• Device and Control Requests
• USBDeviceRequest

• USBMakeBMRequestType



Debugging Drivers
• Use MacsBug when possible

• Use USBExpertStatusLevel to write to the
USB Expert Log

• Use the Power Macintosh Two Machine
Debugger if you have legacy Macs with
serial ports



Demo
USB Prober Expert Log
Command Level



Final Thoughts



Final Thoughts
• Follow the USB Specifications
• Join the USB-IF

• http://www.usb.org

• Provide product strings in your device
• Be aware of how PowerBook sleep may

affect your devices
• Work on “no-restart” installs
• Vendor specific drivers are mandatory



Related Sessions
Hall J2

Thurs., 9:00am
Hall J2

Thurs., 9:00am

Hall J2
Thurs., 2:30pm

Hall J2
Thurs., 2:30pm

USB Feedback
Forum:
Tell us what you think
about USB
FireWire Feedback
Forum:
Tell us what you think
about FireWire



Think different.™







