

Mac OS USB
In-Depth
Jai Chulani
Technology Manager

We’ll Cover
• USB Overview
• Where USB fits into the Mac OS
• How devices describe themselves
• How drivers describe themselves
• How the Mac OS determines what

driver to use

And Also…
• The internals of a device driver
• How drivers operate
• How drivers communicate with devices
• How drivers communicate with

applications

Mac OS USB
In-Depth
Craig Keithley
Technology Manager

USB in the Mac OS

USB Interface Module

USB Device Driver

USB ServicesLib, Expert and
Manager

Mac OS

USB Shim

USB Hardware

Unit Table Driver

Applications

USB Expert
• Handles requests by the hub driver to load

class drivers
• Handles requests by the composite driver

to load interface drivers
• Examines drivers and determines if they

should be loaded

USB Manager
• Provides services to Shims and other

clients
• Sends notifications when devices are

connected or disconnected

• Allows the client to iterate through the
USB device list and locate a particular
device

Devices
and Drivers

How Devices
Describe Themselves

• All devices contain a “Device Descriptor”
• Devices have one or more “Configuration

Descriptors”
• Configuration Descriptors usually contain

one or more “Interface Descriptors”
• Each Interface Descriptor contains one or

more “Endpoints”

Inside a USB Device
Device XYZZY

Configuration
Descriptor #1
 Power Required

Interface
Descriptor

Interface
Descriptor

Interface
Descriptor

Configuration
Descriptor #2

Endpoint
Descriptor

Endpoint
Descriptor
 Type of Endpoint
 (int, bulk, isoch)
 FrequencyEndpoint

Descriptor

DeviceDescripto
r VID and PID
Class and Subclass

Demo
USB Modem

Device Class Codes
• Composite Class… 0
• Audio Class…… 1
• HID Class……3
• Display Class…4
• Printing Class… 7

• Storage Class…… 8
• Hub Class……… 9
• Comm Class…… 2
• Data Class……… 10
• Vendor Specific… 255

Interface Class Codes
• Same as Device Class Codes, except…
• “Composite Class” code (0x00) is a

reserved value in the interface class
code field

Device Review…
Device XYZZY

Configuration
Descriptor #1
 Power Required

Interface
Descriptor

Interface
Descriptor

Interface
Descriptor

Configuration
Descriptor #2

Endpoint
Descriptor

Endpoint
Descriptor
 Type of Endpoint
 (int, bulk, isoch)
 FrequencyEndpoint

Descriptor

DeviceDescript
or VID and PID
Class and Subclass

Communicating
with Devices

• The connection between a driver and an
Endpoint is a “Pipe”

• Four types of Endpoints
• Control

• Interrupt

• Bulk

• Isochronous

Pipes and Endpoints

Device

Driver
Calls USB APIs to access the pipes

Interrupt
Endpoint

Bulk
Endpoint

Control
Endpoint

Pipes

Types of Endpoints
• Control: Changes modes, gets descriptors,

sets features, etc.
• Interrupt: Auto-polled periodic read or

write of small packets to the device
• Bulk: Guaranteed quality, not guaranteed

to be on time
• Isoch: Guaranteed to be on time, not

guaranteed to be error free

Inside a USB Driver File
• One or more Driver Code Fragments

• Each Driver Code fragment contains
• A Driver Description Structure

• A Driver Dispatch Table

• The Driver’s code

Inside a USB Driver File

Driver Code
InitFoo()
{
};

USB
Driver File
(ndrv/usbd)

Driver #1

Driver #2

Driver #3

Driver #2
Code Fragment

Driver
Descriptio
n Structure

Dispatch
Table

Driver
Code

Driver
Description
Structure
VID and PID
Class/Subclass
Loading Options

Dispatch Table
&InitFoo,
&ValidateFoo,
&NotifyFoo,
&FinalizeFoo

Driver Description
Structure

• Vendor and Product ID of driver
• Device Class, Subclass, and Protocol
• Interface Class, Subclass, and Protocol
• Driver loading options indicate…

• If the driver is Vendor Specific

• If the driver should only load as an
interface driver

Types of Drivers
• “Vendor Specific”

• The driver loads only for your device

• “Standard Apple Drivers”
• Generic drivers Apple supplies with the

Mac OS

• Note: The recommended way to make a driver “vendor
specific” is to put a Vendor ID in the driver description
structure and to set the driver loading options correctly

When a Device
Is Attached

• The Hub driver…
• Detects a device attach and

“enumerates” the device

• Asks the USB Expert to load a driver

• The USB Expert…
• Loads the driver and calls its

initialization routine

Matching Drivers
to Devices

• The Expert examines every driver to see if
there’s a potential match to the device

• Vendor and Product IDs

• Class/Subclass/Protocol

• Vendor Specific drivers take precedence
over Standard Apple Drivers

Matching Drivers (Cont.)
• Each driver’s Validate Hardware routine

is called
• The driver’s rank is set to zero if the

Validate Hardware routine returns
an error

• The Expert calls the initialization
routine of the highest ranking driver

Recommendations…
• Write Vendor Specific drivers

• Put your Vendor ID in the
Vendor ID field

• Set the “kUSBDoNotMatchGenericDevice”
flag in the Driver Loading Options field

• Put your Vendor ID in the device
descriptor, not the chip maker’s ID

A Composite Device
Composite Device

Configuration
Descriptor
 Power Required

Interface
Descriptor

Interface
Descriptor
Class and Subclass

Interface
Descriptor

DeviceDescripto
r VID and PID
Composite Class

Interface
Driver

Interface
Driver

Interface
Descriptor
Class and Subclass

Device and
Interface Drivers

• Device drivers must select a configuration,
check power availability, and configure
interfaces

• Interface drivers don’t need to select a
configuration, worry about power
consumption, or configure the interface

Writing a
USB Driver

Writing a USB Driver
• “Vendor Specific” drivers are mandatory
• Driver writers can choose between writing

a “device driver” or an “interface driver”
• Device drivers are loaded for devices

• Interface drivers are loaded for
interfaces within composite devices

Inside a USB Driver File

Driver Code
InitFoo()
{
};

USB
Driver File
(ndrv/usbd)

Driver #1

Driver #2

Driver #3

Driver #2
Code Fragment

Driver
Descriptio
n Structure

Dispatch
Table

Driver
Code

Driver
Description
Structure
VID and PID
Class/Subclass
Loading Options

Dispatch Table
&InitFoo,
&ValidateFoo,
&NotifyFoo,
&FinalizeFoo

Driver Dispatch Table
• Device Initialization routine
• Interface Initialization routine
• Validate Hardware routine
• Notification routine
• Finalize routine

Validate Hardware
• Allows the driver to report whether it

should work for this USB Device
• Return kUSBNoErr if the driver is

acceptable

Device Initialization
• Called when the driver is loaded for

a device
• Initiates the first USB transaction (which

will complete asynchronously)
• Drivers entered via this entry point must

select a device configuration

Device Driver Startup
• Find the desired device configuration
• Set the configuration
• Open the interfaces in the configuration
• Find the “pipes” within the interfaces
• Prepare to read and/or write to the pipes

Selecting a
Configuration

• Depends on how much power is available
• Depends on what interfaces the driver

will use

• Example: Some modems have two configurations, one
with vendor specific interfaces, the other with Comm
and Data interfaces

Interface Initialization
• Called when the driver is loaded to control

an Interface
• Initiates the first USB transaction (which

will complete asynchronously)
• Drivers initialized via this entry point

should not select a configuration

Interface Driver Startup
• Open the interface
• Find the “pipes” within the interface
• Prepare to read and/or write to the pipes

Writing Code

Driver Writing Basics
• Most APIs complete asynchronously
• Completion routines may be called at

Secondary Interrupt time
• Don’t “spin” on the param block

status value
• Use only the USB Services Library and

Driver Services Library

Using
Asynchronous APIs

• Almost all USL APIs require a completion
procedure

• The Mac OS USB DDK examples use state
machines to work with the asynchronous
nature of the USB APIs

• In the DDK examples, one API’s
completion routine just calls another API

Opaque Datatypes
• Opaque datatypes

• DeviceRef

• InterfaceRef

• PipeRef

• Avoid hard coding configuration, interface,
or endpoint numbers

Device Driver
Initialization

USBClassDriverPluginDispatchTable
 TheClassDriverPluginDispatchTable =
{

kClassDriverPluginVersion,
DriverValidateHW,
DeviceInitialize ,
InterfaceInitialize,
DriverFinalize,
DriverNotifyProc,

};

APIs Used
in a Device Driver

• USBFindNextInterface
• USBSetConfiguration
• USBNewInterfaceRef
• USBConfigureInterface
• USBFindNextPipe

USBFindNextInterface

Finding the
Desired Configuration

• Parameters:
• The power available to the device

• The desired interface class, subclass,
and protocol

• Returns:
• Configuration and interface numbers

USBSetConfiguration

Setting the
Device Configuration

• Parameters:
• The configuration number returned by
USBFindNextInterface

• The USB Services Library does a set
configuration to the device

USBNewInterfaceRef

Getting an InterfaceRef

• Parameters:
• The interface number returned by
USBFindNextInterface

• Returns:
• InterfaceRef to the interface

USBConfigureInterface

Configuring the Interface

• Parameters:
• The interfaceRef returned by
USBNewInterfaceRef

• The USB Services Library opens all the
pipes in the interface

USBFindNextPipe

Finding the
Pipes in the Interface

• Parameters:
• The interfaceRef returned by
USBNewInterfaceRef

• pipe type and direction

• Returns:
• pipeRef to the pipe

USBIntRead

Reading From a Pipe

• Parameters:
• The pipeRef returned by
USBFindNextPipe

• A pointer to a buffer

• The number of bytes to read

• Returns:
• Data read from the pipe

Interface Driver
Initialization

USBClassDriverPluginDispatchTable
 TheClassDriverPluginDispatchTable =
{

kClassDriverPluginVersion,
DriverValidateHW,
DeviceInitialize,
InterfaceInitialize,
DriverFinalize,
DriverNotifyProc,

};

Interface Drivers
• Loaded by the composite driver
• Examples:

• Apple’s Mouse Driver

• Apple’s Keyboard Driver

• Don’t need to find interfaces or configure
the device

• Supplied with the interfaceRef at startup

APIs Used in an
Interface Driver

• USBFindNextInterface
• USBSetConfiguration
• USBNewInterfaceRef
• USBConfigureInterface
• USBFindNextPipe

Driver Notification Proc

USBClassDriverPluginDispatchTable
 TheClassDriverPluginDispatchTable =
{

kClassDriverPluginVersion,
DriverValidateHW,
DeviceInitialize,
InterfaceInitialize,
DriverFinalize,
DriverNotifyProc,

};

Driver Notification
• The driver’s notification routine can

be called to inform the driver of the
following:

• Driver Removal

• Sleep demand

• Sleep request
kNotifySystemSleepRequest = 1,
kNotifySystemSleepDemand = 2,
kNotifyDriverBeingRemoved = 11

Removal Notification
• Drivers are notified when they are about to

be removed
• A Driver may report that it is still busy
• The notification routine will be called

repeatedly until the driver reports it is
not busy

• The Driver’s finalize routine is then called,
and the driver is removed

Sleep Notifications
• Important for PowerBooks!
• Sleep Request allows the driver to report

that it is busy, and that the system should
not sleep

• Mounted Volumes, open serial
connections, etc.

• Sleep Demand indicates that the system is
going to sleep, and the driver will be
removed

Sleep in the Future
• USB will allow the device to Suspend and

the driver to remain loaded
• Suspended devices consume far less power

than active devices
• Suspended devices must stop

communication with the device
• Expect that desktop CPUs will ultimately

support USB Suspend

Communicating
with Drivers

Communicating
With Drivers

• Locate the driver’s code fragment
• Locate a symbol within the code fragment

(dispatch table or function)
• Call into the driver using the symbol

• Read or Write data

• Install a callback function

Who Would
Call a Driver?

• USB Shims
• Unit Table Drivers
• Applications

USB Interface Module

USB Device Driver

USB ServicesLib, Expert and
Manager

Mac OS

USB Shim

USB Hardware

Unit Table Driver

USB in the Mac OS
Applications

USB Shims
• Always loaded and resident
• Loaded before the INIT parade
• Can install Unit Table Drivers

Unit Table Drivers
• Pros:

• Provide Classic Device Manager APIs

• Useful when emulating legacy drivers

• Cons:
• Not needed or appropriate for every

class of USB device

• Special handling required if the unit
table needs to grow

Calling USB Drivers
from Applications

• This is not recommended because…
• Applications should concern themselves

with the service and not the device

• Handling hot unplugs within an
application can be problematic

• Most USB APIs complete at Secondary
Interrupt time

Reasons for Shims or
Unit Table Drivers

• Shims/UTDs can handle device connect
and disconnect and “buffer” the
application from a disappearing driver

• Allows Applications to be unconcerned
about which bus (FireWire or USB)
is used

Locating a USB Driver
• Ask the USB Manager what devices are

attached
• Request notification when devices are

connected or disconnected

Ask the USB Manager
• Use the USBGetNextDeviceByClass API
• Parameters:

• Device Class, Subclass, and protocol

• Returns:
• deviceRef and code fragment

connection ID

Requesting Notification
• Use the USBInstallDeviceNotification API
• Parameters:

• Device Class, Subclass, and protocol

• Event type, Product and Vendor Ids

• Notification procptr

• USB Manager calls the notification proc
when a matching device is connected,
disconnected, etc.

Handling Notifications
• Check the notification type

• Determine the deviceRef (provided in the
notification param block)

• Locate the driver’s code fragment

kNotifyAddDevice = 0,
kNotifyRemoveDevice = 1,
kNotifyAddInterface = 2,
kNotifyRemoveInterface = 3

USBGetDriverConnectionID(&theDevRef, &connID);

USBDelay
• Let’s the driver wait for a specific number

of USB frames
• Also used to get to “task time”

• Some Driver Services Library functions
can only be called at task time

• i.e.: Name Registry access can only
occur at task time

Memory Allocation
• USBAllocMem
• USBDeallocMem

• Remember: A USB Driver may be
operating at secondary interrupt time,
which is not safe for NewPtr and other
OS APIs

Other Useful USL APIs
• Pipes

• USBClearPipeStallByReference

• USBAbortPipeByReference

• USBGetPipeStatusByReference

• Device and Control Requests
• USBDeviceRequest

• USBMakeBMRequestType

Debugging Drivers
• Use MacsBug when possible

• Use USBExpertStatusLevel to write to the
USB Expert Log

• Use the Power Macintosh Two Machine
Debugger if you have legacy Macs with
serial ports

Demo
USB Prober Expert Log
Command Level

Final Thoughts

Final Thoughts
• Follow the USB Specifications
• Join the USB-IF

• http://www.usb.org

• Provide product strings in your device
• Be aware of how PowerBook sleep may

affect your devices
• Work on “no-restart” installs
• Vendor specific drivers are mandatory

Related Sessions
Hall J2

Thurs., 9:00am
Hall J2

Thurs., 9:00am

Hall J2
Thurs., 2:30pm

Hall J2
Thurs., 2:30pm

USB Feedback
Forum:
Tell us what you think
about USB
FireWire Feedback
Forum:
Tell us what you think
about FireWire

Think different.™


